Macrolides
Antibiotic Agents
Uses
Antibiotic macrolides are used to treat infections caused
by
Gram-positive bacteria,
Streptococcus pneumoniae, and
Haemophilus influenzae infections such as
respiratory tract and soft-tissue infections. The
antimicrobial spectrum of macrolides is slightly wider than
that of
penicillin, and, therefore, macrolides are a common
substitute for patients with a penicillin allergy.
Beta-hemolytic
streptococci,
pneumococci,
staphylococci, and
enterococci are usually susceptible to macrolides.
Unlike penicillin, macrolides have been shown to be
effective against
Legionella pneumophila,
mycoplasma,
mycobacteria, some
rickettsia, and
chlamydia.
Macrolides are not to be used on non-ruminant
herbivores, such as horses and rabbits. They rapidly produce
a reaction causing fatal digestive disturbance.
[1] It can be used in
horses less than one year old, but care must be taken that
other horses (such as a foal's mother) do not come in
contact with the macrolide treatment.
[edit]
Mechanism
of action
[edit]
Antibacterial
Macrolides are
protein synthesis inhibitors. The
mechanism of action of macrolides is
inhibition of bacterial
protein biosynthesis, and they are thought to do this by
preventing
peptidyltransferase from adding the peptidyl attached to
tRNA to the next amino acid[2]
(similarly to
chloramphenicol)[citation
needed] as well as inhibiting
ribosomal translocation.[2]
Another potential mechanism is premature dissociation of the
peptidyl-tRNA from the ribosome.[3]
Macrolide antibiotics do so by binding reversibly to the
P site on the subunit
50S
of the bacterial
ribosome. This action is mainly bacteriostatic, but can
also be bactericidal in high concentrations. Macrolides tend
to accumulate within
leukocytes, and are, therefore, transported into the
site of infection.[citation
needed]
[edit]
Immunomodulation
[edit]
Diffuse panbronchiolitis
The macrolide antibiotics erythromycin, clarithromycin,
and roxithromycin have proven to be an effective long-term
treatment for the
idiopathic, Asian-prevalent lung disease
diffuse panbronchiolitis (DPB).[4]
[5] The successful
results of macrolides in DPB stems from controlling symptoms
through
immunomodulation (adjusting the immune response),[5]
with the added benefit of
low-dose requirements.[4]
With macrolide therapy in DPB, great reduction in
bronchiolar inflammation and damage is achieved through
suppression of not only
neutrophil granulocyte proliferation but also
lymphocyte activity and obstructive
secretions in airways.[4]
The antimicrobial and antibiotic effects of macrolides,
however, are not believed to be involved in their beneficial
effects toward treating DPB.[6]
This is evident, as the treatment dosage is much too low to
fight infection, and in DPB cases with the occurrence of the
macrolide-resistant bacterium
Pseudomonas aeruginosa, macrolide therapy still
produces substantial anti-inflammatory results.[4]
[edit]
Resistance
The primary means of bacterial resistance to macrolides
occurs by post-transcriptional methylation of the
23S bacterial ribosomal RNA. This acquired resistance
can be either
plasmid-mediated or chromosomal, i.e., through mutation,
and results in cross-resistance to macrolides,
lincosamides, and
streptogramins (an MLS-resistant phenotype).
Two other types of acquired resistance rarely seen
include the production of drug-inactivating enzymes
(esterases or kinases), as well as the production of active
ATP-dependent efflux proteins that transport the drug
outside of the cell.
Azithromycin has been used to treat strep throat (Group
A streptococcal (GAS) infection caused by
Streptococcus pyogenes) in penicillin-sensitive
patients, however macrolide-resistant strains of GAS are not
uncommon.
Cephalosporin is another option for these patients.
[edit]
Side-effects
A 2008 British Medical Journal article highlights that
the combination of macrolides and
statins (used for lowering cholesterol) is not advisable
and can lead to debilitating
myopathy.[7]
This is because macrolides are potent
inhibitors of the
cytochrome P450 system, particularly of
CYP3A4. Macrolides, mainly erythromycin and
clarithromycin, also have a class effect of
QT prolongation, which can lead to
torsade de pointes. Macrolides exhibit
enterohepatic recycling; that is, the drug is absorbed
in the gut and sent to the liver, only to be excreted into
the
duodenum in bile from the liver. This can lead to a
build-up of the product in the system, thereby causing
nausea. In infants the use of erythromycin has been
associated with pyloric stenosis.[8][9]
[edit]
Bibliography
- Ōmura, Satoshi (2002).
Macrolide antibiotics: chemistry, biology, and
practice (2nd ed.). Boston: Academic Press.
ISBN 0-12-526451-8.
[edit]
References
- ^
Giguère, Steeve, John F., and J. Desmond.
Antimicrobial therapy in veterinary medicine. 4th.
Wiley-Blackwell, 2006. Print
- ^
a
b
Protein synthesis inhibitors: macrolides mechanism
of action animation. Classification of agents
Pharmamotion. Author: Gary Kaiser. The Community
College of Baltimore County. Retrieved on July 31,
2009
-
^
The Mechanism of Action of Macrolides, Lincosamides
and Streptogramin B Reveals the Nascent Peptide Exit
Path in the Ribosome Martin Lovmar and Måns
Ehrenberg
- ^
a
b
c
d
Keicho N, Kudoh S
(2002). "Diffuse panbronchiolitis: role of
macrolides in therapy". Am J Respir Med. 1
(2): 119–131.
PMID 14720066.
- ^
a
b
Lopez-Boado YS, Rubin
BK (2008). "Macrolides as immunomodulatory
medications for the therapy of chronic lung
diseases". Curr Opin Pharmacol. 8 (3):
286–291.
doi:10.1016/j.coph.2008.01.010.
PMID 18339582.
-
^
Schultz MJ (2004).
"Macrolide activities beyond their antimicrobial
effects: macrolides in diffuse panbronchiolitis and
cystic fibrosis". J Antimicrob Chemother.
54 (1): 21–28.
doi:10.1093/jac/dkh309.
PMID 15190022.
- ^
Sathasivam,
Sivakumar; Lecky, B (6 November 2008).
"Statin induced myopathy". British Medical
Journal 337: a2286.
doi:10.1136/bmj.a2286.
PMID 18988647.
http://www.bmj.com/cgi/content/extract/337/nov06_3/a2286.
- ^
Sanfilippo, A.
(1976). "Infantile hypertrophic pyloric stenosis
related to ingestion of erythromycine estolate: A
report of five cases". Journal of pediatric
surgery 11 (2): 177–180.
PMID 1263054. edit
- ^
Honein, M. A.;
Paulozzi, L. J.; Himelright, I. M.; Lee, B.; Cragan,
J. D.; Patterson, L.; Correa, A.; Hall, S. et al.
(1999). "Infantile hypertrophic pyloric stenosis
after pertussis prophylaxis with erythromcyin: A
case review and cohort study". Lancet 354
(9196): 2101–2105.
PMID 10609814. edit
[edit]
External links
Uses
Antibiotic macrolides are used to treat infections caused
by
Gram-positive bacteria,
Streptococcus pneumoniae, and
Haemophilus influenzae infections such as
respiratory tract and soft-tissue infections. The
antimicrobial spectrum of macrolides is slightly wider than
that of
penicillin, and, therefore, macrolides are a common
substitute for patients with a penicillin allergy.
Beta-hemolytic
streptococci,
pneumococci,
staphylococci, and
enterococci are usually susceptible to macrolides.
Unlike penicillin, macrolides have been shown to be
effective against
Legionella pneumophila,
mycoplasma,
mycobacteria, some
rickettsia, and
chlamydia.
Macrolides are not to be used on non-ruminant
herbivores, such as horses and rabbits. They rapidly produce
a reaction causing fatal digestive disturbance.
[1] It can be used in
horses less than one year old, but care must be taken that
other horses (such as a foal's mother) do not come in
contact with the macrolide treatment.
[edit]
Mechanism of action
[edit]
Antibacterial
Macrolides are
protein synthesis inhibitors. The
mechanism of action of macrolides is
inhibition of bacterial
protein biosynthesis, and they are thought to do this by
preventing
peptidyltransferase from adding the peptidyl attached to
tRNA to the next amino acid[2]
(similarly to
chloramphenicol)[citation
needed] as well as inhibiting
ribosomal translocation.[2]
Another potential mechanism is premature dissociation of the
peptidyl-tRNA from the ribosome.[3]
Macrolide antibiotics do so by binding reversibly to the
P site on the subunit
50S
of the bacterial
ribosome. This action is mainly bacteriostatic, but can
also be bactericidal in high concentrations. Macrolides tend
to accumulate within
leukocytes, and are, therefore, transported into the
site of infection.[citation
needed]
[edit]
Immunomodulation
[edit]
Diffuse panbronchiolitis
The macrolide antibiotics erythromycin, clarithromycin,
and roxithromycin have proven to be an effective long-term
treatment for the
idiopathic, Asian-prevalent lung disease
diffuse panbronchiolitis (DPB).[4]
[5] The successful
results of macrolides in DPB stems from controlling symptoms
through
immunomodulation (adjusting the immune response),[5]
with the added benefit of
low-dose requirements.[4]
With macrolide therapy in DPB, great reduction in
bronchiolar inflammation and damage is achieved through
suppression of not only
neutrophil granulocyte proliferation but also
lymphocyte activity and obstructive
secretions in airways.[4]
The antimicrobial and antibiotic effects of macrolides,
however, are not believed to be involved in their beneficial
effects toward treating DPB.[6]
This is evident, as the treatment dosage is much too low to
fight infection, and in DPB cases with the occurrence of the
macrolide-resistant bacterium
Pseudomonas aeruginosa, macrolide therapy still
produces substantial anti-inflammatory results.[4]
[edit]
Resistance
The primary means of bacterial resistance to macrolides
occurs by post-transcriptional methylation of the
23S bacterial ribosomal RNA. This acquired resistance
can be either
plasmid-mediated or chromosomal, i.e., through mutation,
and results in cross-resistance to macrolides,
lincosamides, and
streptogramins (an MLS-resistant phenotype).
Two other types of acquired resistance rarely seen
include the production of drug-inactivating enzymes
(esterases or kinases), as well as the production of active
ATP-dependent efflux proteins that transport the drug
outside of the cell.
Azithromycin has been used to treat strep throat (Group
A streptococcal (GAS) infection caused by
Streptococcus pyogenes) in penicillin-sensitive
patients, however macrolide-resistant strains of GAS are not
uncommon.
Cephalosporin is another option for these patients.
[edit]
Side-effects
A 2008 British Medical Journal article highlights that
the combination of macrolides and
statins (used for lowering cholesterol) is not advisable
and can lead to debilitating
myopathy.[7]
This is because macrolides are potent
inhibitors of the
cytochrome P450 system, particularly of
CYP3A4. Macrolides, mainly erythromycin and
clarithromycin, also have a class effect of
QT prolongation, which can lead to
torsade de pointes. Macrolides exhibit
enterohepatic recycling; that is, the drug is absorbed
in the gut and sent to the liver, only to be excreted into
the
duodenum in bile from the liver. This can lead to a
build-up of the product in the system, thereby causing
nausea. In infants the use of erythromycin has been
associated with pyloric stenosis.[8][9]
[edit]
Bibliography
- Ōmura, Satoshi (2002).
Macrolide antibiotics: chemistry, biology, and
practice (2nd ed.). Boston: Academic Press.
ISBN 0-12-526451-8.
[edit]
References
- ^
Giguère, Steeve, John F., and J. Desmond.
Antimicrobial therapy in veterinary medicine. 4th.
Wiley-Blackwell, 2006. Print
- ^
a
b
Protein synthesis inhibitors: macrolides mechanism
of action animation. Classification of agents
Pharmamotion. Author: Gary Kaiser. The Community
College of Baltimore County. Retrieved on July 31,
2009
-
^
The Mechanism of Action of Macrolides, Lincosamides
and Streptogramin B Reveals the Nascent Peptide Exit
Path in the Ribosome Martin Lovmar and Måns
Ehrenberg
- ^
a
b
c
d
Keicho N, Kudoh S
(2002). "Diffuse panbronchiolitis: role of
macrolides in therapy". Am J Respir Med. 1
(2): 119–131.
PMID 14720066.
- ^
a
b
Lopez-Boado YS, Rubin
BK (2008). "Macrolides as immunomodulatory
medications for the therapy of chronic lung
diseases". Curr Opin Pharmacol. 8 (3):
286–291.
doi:10.1016/j.coph.2008.01.010.
PMID 18339582.
-
^
Schultz MJ (2004).
"Macrolide activities beyond their antimicrobial
effects: macrolides in diffuse panbronchiolitis and
cystic fibrosis". J Antimicrob Chemother.
54 (1): 21–28.
doi:10.1093/jac/dkh309.
PMID 15190022.
- ^
Sathasivam,
Sivakumar; Lecky, B (6 November 2008).
"Statin induced myopathy". British Medical
Journal 337: a2286.
doi:10.1136/bmj.a2286.
PMID 18988647.
http://www.bmj.com/cgi/content/extract/337/nov06_3/a2286.
- ^
Sanfilippo, A.
(1976). "Infantile hypertrophic pyloric stenosis
related to ingestion of erythromycine estolate: A
report of five cases". Journal of pediatric
surgery 11 (2): 177–180.
PMID 1263054. edit
- ^
Honein, M. A.;
Paulozzi, L. J.; Himelright, I. M.; Lee, B.; Cragan,
J. D.; Patterson, L.; Correa, A.; Hall, S. et al.
(1999). "Infantile hypertrophic pyloric stenosis
after pertussis prophylaxis with erythromcyin: A
case review and cohort study". Lancet 354
(9196): 2101–2105.
PMID 10609814. edit
[edit]
External
links
品名規格 |
Claricin Film Coated Tablets 250mg |
廠
商 |
培力藥品工業股份有限公司 |
代
號 |
OCLA |
成 份 名 |
Clarithromycin 250mg/Tab. |
中文名稱 |
特立適膜衣錠250毫克”培力” |
藥理分類 |
Anti-infective agents/Antibiotics/Macrolides/Other
macrolides |
外
觀 說明書
(1) (2)
|
|
品名規格 |
Erymycin Capsules 250mg |
廠
商 |
Taiwan Veterans Pharmaceutical Co.,
Ltd. |
代
號 |
OERY2 |
成 份 名 |
Erythromycin 250mg/Cap. |
中文名稱 |
毅力黴素 膠囊250毫克 |
藥理分類 |
Anti-infective agents/Antibiotics/Macrolides/Erythromycins |
外
觀
說明書
|
|
【藥理作用】
Erythromycin 為 macrolide 抗生素,可能為抑菌劑,也可能為殺菌劑。它能與
50S ribosome 結合而抑制細菌的蛋白質合成。
藥動學
•吸收:Erythromycin 基在酸中十分不穩定,故一般口服製劑會製成腸衣錠或膜衣
錠。在酸中穩定的鹽類及酯類 (如 estolate、ethylsuccinate 與 stearate)口服吸收
良好。一般而言,base 及 stearate 鹽類應空腹服用,estolate 及 ethylsuccinate 製
劑則不受食物的影響,甚至會因食物而增加吸收。
•分佈:約 70% 的 erythromycin 在血中會與蛋白質結合,它可以分佈至大部分的體
液,包括前列腺 (可達血中濃度的 40%)。脊髓液中濃度較低,但腦膜發炎時則
有較高的濃度。Erythromycin 可穿過胎盤,也能分泌至乳汁中。
•代謝/排泄:肝功能正常時,erythromycin 會在肝臟濃縮經由膽汁排出。半衰期約為
1.4 小時,無尿病人則可長達 4.8-5.8 小時。口服後藥品由尿中排出的比例 <
5%,腹膜透析或血液透析皆無法排除 erythromycin。
【適應症】
•Erythromycin 為以下病原感染之首選藥:
*Mycoplasma pneumoniae 引起的呼吸道感染。
*Corynebacterium diphtheriae 及 C. minutissimum 引起的感染:作為抗毒素的輔
助治療或治療帶原者。治療紅癬 (erythrasma)。
*Legionella pneumophila 引起的感染 (Legionnaires' Disease)。
*Bordetella pertussis 引起的感染:根除鼻咽部病菌,也能幫助預防百日咳。
*Entamoeba histolytica 引起的阿米巴痢疾 (intestinal dysenteric amebiasis)。
*Hemophilus influenzae 引起的感染:與 sulfonamides 併用,治療輕微至中度的
上呼吸道感染 (如中耳炎)。
•替代 penicillin 或 tetracycline 治療以下感染:
*Streptococcus pyogenes (group A b-hemolytic streptococcus) 引起的感染:輕微
至中度的呼吸道、皮膚及軟組織感染;預防風濕熱復發;預防 streptococcus 感
染之復發。
*a-hemolytic streptococcus (viridans):預防因上呼吸道或口腔處置引起之細菌性
心內膜炎。
*Streptococcus pneumoniae 引起的感染:輕度至中度的上呼吸道感染 (如中耳
炎、咽炎)及下呼吸道感染 (如肺炎)。
*Listeria monocytogenes 引起的感染。
*Staphylococcus aureus 引起的感染:輕微至中度的皮膚及軟組織感染。治療中
可能出現抗藥性。
*Chlamydia trachomatis 引起的感染:新生兒的結膜炎、嬰兒的肺炎、懷孕中的
生殖泌尿系感染、成人的無併發症性尿道、子宮頸內及直腸感染。
*Treponema pallidum 引起的感染:初期梅毒 (primary syphilis),參閱下述其他
用途。
•其他用途:
*Neisseria gonorrhoeae 引起的感染:擴散的淋病菌感染、無併發症性尿道、子
宮頸內及直腸感染,亦可用於產生 penicillinase 的 N. gonorrhoeae 感染,或用
於孕婦。
*Treponema pallidum 引起的感染:治療早期的梅毒 (病期短於 1 年),或病期長
於 1 年的梅毒 (神經梅毒除外)。
*非淋病性尿道炎:無併發症性尿道、子宮頸內及直腸感染。
*Ureaplasma urealyticum 引起的感染:以 erythromycin ethylsuccinate 治療。
*Campylobacter fetus 引起的感染:Erythromycin 曾有效的治療 campylobacter
腸炎引起的腹瀉。
*花柳性淋巴肉芽腫 (Lymphogranuloma venereum):生殖道、鼠蹊部及肛門直腸
感染。
*Hemophilus ducreyi (軟性下疳):應治療至潰瘍或淋巴結癒合。
*Erythromycin 及 neomycin 經常於大腸直腸手術前合併使用以減少傷口併發症。
【禁忌】
•對 erythromycin 過敏。
•Erythromycin estolate 及 ethylsuccinate 避免使用於肝臟疾病患者。
【注意事項】
•肝功能不全:Erythromycin 主要由肝臟代謝,肝功能不全病人應謹慎使用。
•肝毒性:Erythromycin 偶而會引起膽汁鬱滯性肝炎,較常見於 estolate 及 ethyl-
succinate 類製劑。檢驗值可發現肝功能異常,周邊嗜伊紅性血球增加及白血球
增加。症狀包括疲累、噁心、嘔吐、腹部絞痛及發燒,可能出現黃疸。某些嚴
重的腹痛會類似膽絞痛、胰臟炎、穿孔性潰瘍或急性的腹部問題。某些臨床症
狀及肝功能檢驗會類似肝外阻塞性黃疸,停藥後這些症狀會消失。
•偽膜性結腸炎 (pseudomembranous colitis):使用廣效抗生素 (包括 macrolide、
penicillins 與 cephalosporins)皆可能由於腸內 C. difficile 的過度生長而引起偽膜
性結腸炎。如果有腹瀉症,應考慮此可能性。
•懷孕用藥級數:B 級。Erythromycin 可通過胎盤 (濃度約母體的 5%-20%)。
Erythromycin estolate 會使約 10% 的懷孕婦女之肝功能檢驗值提高。
•授乳期:Erythromycin 會分泌至乳汁,且可能被濃縮 (乳汁對血清濃度比為 0.5-
3.0),雖無嬰兒不良反應報告,但 erythromycin 可能影響嬰兒腸道正常菌種分
佈及產生藥理作用。若有發燒或感染,細菌培養結果可能受到干擾。
•追加感染 (superinfection):長期或重複使用抗菌劑,會因黴菌或不具感受性病菌的過
度生長而導致追加感染。
•尿液鹼化 (pH 8.5) 可增強 erythromycin 對革蘭氏陰性菌的抗菌作用。
【藥品交互作用】
藥品 |
作用 |
Carbamazepine |
肝臟代謝可能受 erythromycin 抑制,毒性因而增加。 |
Cyclosporine |
廓清率可能受 erythromycin 抑制,而增強藥理作用。 |
Digoxin |
約 10% 的病人 digoxin 療效及毒性會增強。 |
Methylprednisolone |
肝臟代謝可能受 erythromycin 抑制,而增強藥理作用。 |
Penicillins |
抗菌效果可能受 erythromycin 影響而降低。 |
Sulfonamide |
對 Hemophilus influenzae 的抗菌效果有加乘作用。 |
Theophylline |
肝臟代謝可能受 erythromycin 抑制,而增強藥效及毒性,應監測血中濃度。 |
Warfarin |
抗凝血作用增強,應降低劑量並監測 prothrombin 活性。 |
檢驗值 |
Erythromycin 會干擾尿中 catecholamine 的檢驗值。 Erythromycin
也會抑制腸道中類固醇的水解,而降低尿中 estriol 的濃度。 |
【副作用】
•過敏性反應:包括皮疹、蕁麻疹、搔癢及過敏性休克。
•腸胃道:與劑量有關,包括腹部不適及絞痛、厭食、噁心、嘔吐、腹瀉及偽膜性結
腸炎。參閱【注意事項】。
•耳毒性:曾導致可逆性的聽覺喪失,主要發生於腎功能不全患者、老年人 (> 50歲)
及高劑量使用者 (每日 > 4g)。
•肝毒性:較常見於 erythromycin estolate 及 erythromycin ethylsuccinate,也曾發生於
erythromycin stearate。
•精神方面:曾有精神病方面併發症的報告,包括無法控制的嚎哭、歇斯底理性狂
笑、害怕、精神紊亂、思考異常及意識喪失等。
【中毒與過量】
依一般藥物過量方式處理,血液透析及腹膜透析皆無法排除 erythromycin。
【病患教育資訊】
•空腹服用 (飯前至少 1 小時或飯後 2 小時)。若覺得腸胃不適,可與食物一起服用。
Erythromycin estolate、ethylsuccinate 及腸衣錠製劑可以不必考慮食物之影響。
•完成全程治療,不可任意停藥。
•與適量水一起服用 (120-240ml)。
•依固定間隔時間服藥。
•可能引起噁心、嘔吐、腹瀉或腹絞痛,若症狀持續應告知醫師。
•若產生嚴重腹痛、皮膚及眼睛呈黃色、尿液顏色變暗、糞便顏色變淺或異常疲累,
應告知醫師。
【用法與劑量】
•劑量及製劑單位含量皆以 erythromycin 基標示。由於不同鹽類之吸收度及在體內轉
換形式不同,產生相同血中濃度所需的劑量也會不同,如 400mg erythromycin
ethylsuccinate 能達到與 250mg erythromycin 基或 stearate、estolate 相同的血中
濃度。
•Erythromycin 基及 stearate 應空腹服用,erythromycin ethylsuccinate、estolate 及腸
衣錠則不受食物影響。
•成人:250mg q6h (或 400mg ethylsuccinate)或 500mg q12h,依疾病嚴重程度可增
至每日 4g 或更高。
•兒童:每日 30-50mg/kg,分次服用。嚴重感染時劑量可加倍。
|